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A first-principles approach is presented for calculations of optical, ultraviolet spectra including excitonic
effects. The approach is based on Bethe-Salpeter equation calculations using the NBSE code combined with
ground-state density-functional theory calculations from the electronic structure code ABINIT. Test calculations
for bulk Si are presented, and the approach is illustrated with calculations of the optical spectra and birefrin-
gence of �-phase SiO2 and the rutile and anatase phases of TiO2. An interpretation of the strong birefringence
in TiO2 is presented.
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I. INTRODUCTION

As in many subfields in condensed matter physics, the
application of density-functional theory �DFT�1–3 has signifi-
cantly influenced studies of material optical properties. How-
ever, treatments based on Kohn-Sham dipole transitions
alone only provide a beginning for modeling optical spectra
since a ground-state one-electron approach cannot account
for a range of excited-state and optical effects. Thus, quanti-
tative calculations of optical spectra require the integration
of DFT with a number of many-body techniques. Local field
corrections from the random phase approximation �RPA�
alone are inadequate to reproduce near-gap optical spectra
because they do not take into account self-energy and exci-
tonic effects. Consequently a quantitative theory and inter-
pretation must also include quasiparticle self-energy effects
based, e.g., on the GW method,4,5 and particle-hole interac-
tions based on the Bethe-Salpeter equation �BSE�.6 The suc-
cess of the BSE method has effectively settled the long-
running discussion of the origin of many low-energy spectral
features.7,8 For example, for the rutile phase of TiO2, early
studies could only speculate about the relative importance of
excitonic effects versus band-structure topology in the domi-
nant threshold absorption,9 whereas we show here that these
features are dominated by excitonic effects.

While the BSE is often necessary for accurate calculations
of optical spectra, the approach has had limited applications
largely due to a lack of efficient computational methods for
general systems. To address this need, we have developed an
approach based on an interface, here dubbed AI2NBSE, be-
tween the BSE code NBSE �NIST Bethe-Salpeter equation�
developed at National Institute of Standards and Technology
�NIST�10 and the general purpose DFT electronic structure
code ABINIT.11 One of the objectives of this work is to im-
prove the availability of BSE codes. Our interface also pro-
vides a comparison to the BSE codes EXC �Ref. 12� and
EXC!TING,13 and other recent codes,14 and also to approaches
which model electron-hole interactions within time-
dependent density-functional theory �TDDFT�.15 The latter
calculations are usually simpler than BSE ones, but in prac-
tice are limited by an incomplete knowledge of the
exchange-correlation functional and the neglect of damping

effects. The overall strategy of our interface also differs from
EXC in several respects, although both make use of ABINIT.
For example our AI2NBSE interface achieves efficiency in the
BSE calculations through the use of the
Hybertsen-Levine-Louie16,17 dielectric screening, and can
also treat finite momentum transfer. Also, the interface re-
quires only generic input, and, thus, can be adapted to other
ground-state and BSE codes.

The interface is tested on bulk Si, yielding results in good
agreement with other approaches. In particular we find that
the calculations based on ABINIT are in excellent agreement
with those from the optimal basis function �OBF� code.18 As
initial applications, we report optical spectra and anisotropic
optical properties of the common rutile and anatase phases of
TiO2, and for the �-quartz phase of SiO2. These are impor-
tant materials for many applications.19,20 However, we are
not aware of earlier calculations for TiO2 that include
electron-hole interactions, which are needed to reproduce
their rich dependence on polarization and phase.

In the remainder of this paper we briefly summarize the
key formulas describing excitonic effects and other features
of NBSE. We then briefly describe our integration of ABINIT

and NBSE, using bulk Si as an illustrative test case, with some
further details in the Appendix. Finally, calculations are pre-
sented for the birefringent spectra of � quartz, and similarly
for the rutile and anatase phases of TiO2, followed by a
summary and conclusions.

II. BSE AND EXCITONIC EFFECTS

A. Exciton secular equation

In this paper we briefly summarize the BSE formalism,
following the notation and theoretical developments of Shir-
ley et al.21 Formally the BSE provides a complete theory for
optical spectra through a hierarchy of equations derived from
the two-particle Green’s function.22,23 However, with certain
approximations to the electron-hole interaction, the BSE can
be reduced to an eigenvalue problem of an effective particle-
hole Hamiltonian24

H�f� = �H1e + H2e��f� = � f�f� , �1�

where the eigenstates �f� are given by a superposition of
particle-hole basis states25 �nn�k�q��, i.e.,
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�f� = �
nn�k

� f�nn�k�q���nn�k�q�� ,

�nn�k�q�� � ankan�k+q
† �0� , �2�

and throughout this paper we use atomic units �e=�=m
=1�. Here � f�nn�k�q�� is the amplitude of a given particle-
hole �or excitonic� state with Bloch crystal momentum index
k and momentum transfer q, the index n runs over all occu-
pied valence bands, the index n� runs over unoccupied
bands, and �0� denotes the many-body ground-state with en-
ergy �0=0. For optical absorption q is usually negligible.
However for inelastic x-ray scattering and other spec-
troscopies and for computational purposes, it is desirable to
retain the explicit momentum-transfer dependence. The
single-particle contribution to the Hamiltonian for a particle-
hole pair is diagonal in the quasiparticle or quasihole basis so
that one has

H1e�nn�k�q�� = �En�k+q − Enk��nn�k�q�� , �3�

where the quasiparticle energies Enk are Kohn-Sham eigen-
values �nk plus quasiparticle self-energy corrections

Enk = �nk + �nk. �4�

Here �nk is the self-energy calculated in the GW approxima-
tion for which efficient approximations have been
developed.21,26

The electron-hole interaction contribution includes both
“direct” and “exchange” couplings H2e=VD+VX,

H2e�nn�k�q�� = �
n�n�k

�VD�nn�k,n�n�k�;q�

+ VX�nn�k,n�n�k�;q���n�n�k��q�� , �5�

with matrix elements defined explicitly below. Once the BSE
secular equation is solved, the optical constants may be ob-
tained formally using a Fermi golden rule expression in
terms of the excitonic final states coupled to the currentlike
operator J�� . In the NBSE code, however, these properties are
calculated using resolvent techniques. In particular the
imaginary part of the dielectric tensor is given in terms of
resolvents

Im 	�
��� = − 4� Im�	0�J�� �� − H + i
�−1J
��0�

− 	0�J
��− � − H − i
�−1J�� �0�� . �6�

In terms of the particle-hole states, the currentlike operator
coupling to the ground state is given approximately by

J�� �0� 
 �
nn�k

�nn�k�q��
	�n�k+q�J���nk�

�n�k+q − �nk
, �7�

where J� is the �th component of the current operator and
�nk are approximated as Kohn-Sham one-particle states. For
small q, the matrix elements of J� are approximated by

1

�
	�n�k+q�J���nk� 
 ��n�k+q − �nk

�q�
�	�n�k+q�eiq·r��nk�



1

q�

	�n�k+q�eiq·r��nk� , �8�

where q=q�̂. In the NBSE code these resolvents in the above
expressions for the dielectric tensor are calculated using an
efficient iterative Lanczos algorithm.27

B. Electron-hole Interaction

The interaction kernel H2e of Eq. �5� accounts for two
processes, which scatter an electron from band n� to band
n�, and a hole from band n to band n�. The first is the
attractive direct screened Coulomb interaction between the
electron and the hole, and the second is the repulsive un-
screened exchange interaction. Each of these contributions
can be written in terms of two-particle integrals between
electron and hole Kohn-Sham orbitals �nk�x� and �n�k+q�x�.
Matrix elements of the direct term are given by

VD�nn�k,n�n�k�;q�


 −
 d3x�n�k�+q
� �x��n�k+q�x�
 d3x��nk

� �x��

��n�k��x��W�x,x�;� = 0� . �9�

Here the electron-hole interaction W�x ,x� ;�� is the screened
Coulomb attraction as mentioned above, i.e., W=	−1���V,
which in an exact theory should include the frequency de-
pendence of the dielectric response. However the NBSE code
approximates the screening with the static, spatially depen-
dent Hybertsen-Levine-Louie dielectric function.16,17 This
model maps the local density in real solids to the density
dependence in a homogeneous system. These calculations
require the ground-state density, whose Fourier coefficients
are

��G� =
2

N
�

nk,G�

fnk�nk�G + G���nk
� �G�� , �10�

where fnk=���F−�nk� is the occupation of state nk, N is the
number of unit cells in the ABINIT calculation, which is the
same as the number of k points in the calculation, and spin
degeneracy is assumed. Here �nk�G� are the Fourier coeffi-
cients of the Bloch wave expansion17 in reciprocal lattice
vectors

�nk�x� = eik·x�
G

�nk�G�eiG·x. �11�

Because the dielectric function is modeled locally, the exci-
ton amplitudes must be transformed from the Bloch basis to
a local basis with coordinates x and x�. These local coordi-
nates can be considered as transform analogs of the band and
wave-vector indices n, n�, and k.10

Similarly matrix elements of the exchange term are
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VX�nn�k,n�n�k�;q� 
 + 2
 d3x�n�k�+q
� �x��n�k��x�

�
 d3x��nk
� �x���n�k+q�x��

1

�x − x��
.

�12�

As noted, for example by Hybertsen and Louie, the exchange
term in the BSE should be unscreened.

The matrix dimension of the electron-hole interaction H2e
is generally very large. For example, for the calculations for
SiO2 presented below, 216 k points are sampled, and there
are 24 doubly-degenerate valence �hole� states and 26 con-
duction �electron� states. For this case, there are over 105

electron-hole pairs, each requiring a representation in both
periodic and local bases.

C. AI2NBSE interface

The above theory has been implemented in a modular
code, which uses the output of ground-state density-
functional theory calculations from the electronic structure
code ABINIT as input to Bethe-Salpeter equation calculations
using the NBSE code. The interface serves as a driver for both
ABINIT and NBSE, starting from a single input file, and also
constructs the various physical quantities and arrays needed
in the calculations. No explicit changes in the structure or
coding of either ABINIT or NBSE are used. Both the interface
and documentation are available from the authors.28 Addi-
tional details are given in Appendix.

III. OPTICAL SPECTRA OF SILICON

As a quantitative test, illustrative results from AI2NBSE for
bulk Si are presented in Fig. 1. The two spectra compared are
each calculations of the imaginary part of the dielectric func-
tion for bulk Si using NBSE: in one case the ground-state
quantities above are calculated with the OBF pseudopotential,
plane-wave code18—for which NBSE was originally
designed—and in the other case the same quantities are cal-

culated from ABINIT. In both calculations 20 valence and
conduction bands were included with an eight Hartree cutoff
criteria for the vectors G. The close quantitative agreement
between OBF and ABINIT, thus, serve as a quality check on
the various theoretical and algorithmic approximations used
in our interface.

Our AI2NBSE interface can also be applied to finite
momentum-transfer calculations. For example, Fig. 2 illus-
trates the spectrum for a momentum transfer of magnitude
q=0.8 a0

−1, where a0 is the Bohr radius. Results from a re-
cent TDDFT calculation are also plotted.29

IV. OPTICAL SPECTRA OF � QUARTZ

The excitonic character of the �-quartz optical spectra had
been recognized even before first-principles investigations
became possible.30,31 The large band gap and small static
dielectric constant of � quartz, and the prominent low-energy
features in the spectrum, suggest a strong excitonic role in
the optical properties, which was subsequently confirmed by
first-principles calculations.25 Our calculations, like those of
Ref. 25, reproduce the measured spectra in detail, with ex-
cellent agreement in oscillator strength and calculated feature
positions corresponding with those measured to within tenths
of an eV. The results can be seen in Fig. 3.

The calculations of Ref. 25 were performed for photon
polarization within the hexagonal plane �i.e., the “ordinary
ray”�, noting that this is the most commonly measured spec-
trum. However, this material is uniaxial, possessing an inde-
pendent optic axis normal to the hexagonal plane. We have
also carried out calculations for photon polarization perpen-
dicular to the hexagonal plane �i.e., the “extraordinary ray”�.
As illustrated in Fig. 3, � quartz exhibits some anisotropy,
but it is less pronounced than for rutile. This result is con-
sistent with the known role of the SiO4 tetrahedron versus
the anisotropic crystal structure, and the structural phase in-
sensitivity of the optical functions in quartz.30

While birefringence in � quartz is a well-studied effect, it
is small relative to TiO2 crystals discussed in Sec. V. Below
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FIG. 1. Imaginary part of the dielectric function for Si using
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the interband transition energies, but above the lattice re-
sponse, we find static indices of refraction of 1.52 for the
ordinary polarization, and 1.53 for the extraordinary at 0.7
eV, in precise agreement with the measured values.32

V. OPTICAL SPECTRA OF RUTILE AND ANATASE

As one of the simplest transition-metal oxides, TiO2 ex-
hibits a variety of natural crystal structures and presents a
fundamentally interesting system for first-principles elec-
tronic structure methods. This material is also an important
component in various ultraviolet �UV� applications. It has
been demonstrated that ab initio methods can describe vari-
ous physical properties of TiO2.19,20 There have been a few
ab initio studies of UV dielectric spectra for rutile and ana-
tase phases. Glassford and Chelikowsky33 reported calcula-
tions for the rutile phase using a plane-wave pseudopotential
approach; Mo and Ching34 used a linear-combination-of-
atomic-orbital method for both phases �and brookite�; and
Asahi et al.35 studied the anatase phase with a linearized

augmented plane-wave method. However, none of these
studies included excitonic effects. A theoretical treatment
that includes excitonic states may contribute to understand-
ing its optical properties. Toward this end, we present calcu-
lations of the spectra of TiO2, with polarization dependence,
for both the rutile and anatase phases using our AI2NBSE
interface.

Each of the two TiO2 phases is tetragonal, and Mo and
Ching34 and Fahmi et al.36 reviewed their structural proper-
ties including crystal structures, space groups, and differ-
ences in bond lengths and angles. These two crystal struc-
tures can be considered as arrangements of slightly distorted
oxygen octahedral elements with a titanium atom at the cen-
ter of each so that each titanium has an oxygen coordination
of six and each oxygen has a titanium coordination of three.
The relationship between the two structures has been de-
scribed in terms of varied orientation among the octahedral
chains. The two polymorphs studied here can be generated
with six-atom unit cells corresponding to two TiO2 units.
Each unit possesses two inequivalent bonds of “apical” and
“equatorial” character, such that each titanium atom sees two
apical and four equatorial bonds, while each oxygen atom
sees one apical and two equatorial bonds.

Structural similarities in rutile and anatase lead to simi-
larities in their electronic structure. In Fig. 4 we plot the
ABINIT-calculated densities of states for the two materials.
The local-density approximation �LDA� gives the uppermost
valence-band width of about 5 eV for anatase and 6 eV for
rutile, and this band is regarded to be dominated by O 2p
character. The anatase LDA band gap is greater than that of
rutile by about 0.2 eV, corresponding with the measured
difference.37 Because the oxygen-bonding environment is
planar in both phases, there is a decomposition of the O 2p
into p� and p� states.35,38 The first conduction band is domi-
nated by Ti 3d character, with the lower half regarded as t2g
like, and the upper half regarded as eg like.35,38 As can be
seen in Fig. 4 and from the band structures,19 these subbands
are reasonably resolved energetically.

We performed calculations with semicore states treated as
core using Troullier-Martins-type pseudopotentials,33,39 and
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FIG. 3. Imaginary part of the dielectric function for SiO2 with
in-plane polarization �top�, and out-of-plane polarization �bottom�.
Theoretical spectra from ABINIT and OBF �solid line and dashed line�
spectra are plotted for both polarizations. The calculated spectra use
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as valence using Teter-type pseudopotentials.19,40 While the
semicore states have spatial localizations comparable to oxy-
gen 2p states, their energies are many eV below the Fermi
level. Our calculations suggest that the optical and UV spec-
tra are not highly sensitive to the treatment of Ti semicore
states, and that the primary source of the discrepancy be-
tween theoretical and experimental spectra is the neglect of
the excitonic effects in the low-energy region.

A. Rutile phase

The spectra calculated for rutile with the AI2NBSE inter-
face �Fig. 5� demonstrate significant excitonic effects, as can
be seen by comparison with calculations �Fig. 6�, which ne-
glect electron-hole interactions and are calculated within the
RPA.

One signature of the excitonic effects is the sharp onset in
our BSE calculations, which better reproduces experimental
spectra. Our results for the polarization dependence in TiO2
show a much more prominent anisotropic optical response
than in SiO2. This results in strong birefringence, as seen in

Fig. 7. Our calculated static indices of refraction differ by
0.30, in agreement with the observed birefringence.9

Two pronounced anisotropic features in our calculations
are consistent with experimental spectra.9,41 First, the pri-
mary onset absorption feature assumes a doublet structure for
the ordinary ray, which is not evident for the extraordinary
ray. These low-energy excitonic features at 4.0 and 5.3 eV
are clearly evident in our calculation and are expected to
involve t2g-like final states.34 Second, the onset of absorption
for the extraordinary ray is significantly stronger than for the
ordinary. For the extraordinary ray, a single feature is mea-
sured at 4.1 eV, which is stronger, broader, and more sym-
metric than for the ordinary ray. However, a third anisotropic
feature of our calculations, namely, the much stronger ab-
sorption peak for the extraordinary ray above 6 eV, is not
clearly seen in the experimental reflectivity spectra. To sum-
marize, our BSE calculation gives a stronger, less structured
t2g-like absorption band for the extraordinary ray than for the
ordinary, in accord with experiment.

Above 7 eV, there is notable discrepancy between the the-
oretical and experimental rutile spectra. The origin of the
prominent absorption above 7 eV has been established as
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“transitions between the O 2p orbitals and the eg conduction-
band states,”34 an analysis consistent with the present results.
However, the bandwidths and centroid separations between
the eg and t2g subbands from the density of states and from
the optical spectra agree to within 20%, with differences aris-
ing from valence-state dispersion and matrix-element effects.

The data of Cardona and Harbeke9 are obtained from re-
flectance measurements and rely on Kramers-Kronig trans-
formations. Overall the spectra of their influential work ex-
hibits smaller absorption above 7 eV than that calculated in
available first-principles work or that measured for anatase.
Also their data exhibits less prominent eg features than what
appear in the measured x-ray absorption spectra.33,42 Toward
a critical comparison of our calculated spectra and those of
Ref. 9, we compared the effective oscillator strength contri-
butions from our calculated absorption with that from the
experimental spectrum. If we consider the net oscillator
strength in the absorption up to 12 eV, the experimental spec-
trum gives about seven electrons per primitive cell, while our
calculated spectrum gives about eight. Though they agree to
within about 10%, both of these numbers are low compared
to the net valence-band charge of 24 electrons within a range
of 10 eV below the Fermi level, and reflect a relatively slow
increase in net oscillator strength with increasing energy for
TiO2. Indeed, by analyzing an additional calculation contain-
ing 200 conduction bands, we found that one reaches a net
oscillator strength of 24 electrons only at 39 eV. We also
found that the net oscillator strength in our calculation satu-
rates at about 44 electrons above about 100 eV, a number
comparable to the 48 valence and semicore states of the TiO2
units included in the pseudopotential calculation. This slow
increase in the net oscillator strength is in contrast to that
observed in type IV and type III-V cubic materials, where
saturation occurs typically within the first 20 eV.43 The slow
increase for TiO2 is partly due to the forbidden nature of
2s-2p transitions, which forces a significant amount of oscil-
lator strength to higher energies.

B. Anatase phase

Theoretically, both the valence-band and conduction-band
densities of states are similar to that of rutile, as shown in
Fig. 4. However, their experimental absorption spectra show
more variation �Fig. 8.�. Strikingly, the measured spectrum of
anatase for the ordinary ray �in-plane polarized� shows a
clear low-energy shoulder below the primary absorption
feature.41,44 This feature is not seen in rutile, and calculations
neglecting the electron-hole interactions in anatase do not
clearly resolve it.34,35 Aside from this low-energy feature, the
spectral structure and anisotropy of anatase, both calculated
and measured, have some similarities to that of rutile. Thus
features in the spectra have been analyzed,35,44 and conclu-
sions regarding the relevant bands are reminiscent of results
for rutile.33 For the eg-like absorption band, the experimental
spectrum for anatase does show a stronger absorption for the
extraordinary ray,44 similar to what is calculated in both the
rutile and anatase phases, but not seen in experimental rutile
spectrum. We have found, by comparing results from Teter-
type and Troullier-Martins pseudopotentials that part of the
disagreement at high energy between the ABINIT and OBF
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results for the anatase extraordinary ray is due to differences
in the pseudopotentials used.

C. Interpretation of polarization dependence

Molecular-orbital interpretations of the TiO2 spectra have
been reported widely42,45 and provide a qualitative picture of
the electronic structure in this system. Such analyses illus-
trate the hybridization between the Ti 3d and O 2p states.
However, immediately above and below the Fermi level, the
hybridization has been shown to be weak.35,38 The calcula-
tions of Sorantin and Schwartz35 demonstrate that the va-
lence band for rutile just below the Fermi level is primarily
�-bonding O 2p character, while lower in energy is prima-
rily �-bonding O 2p character. Just above the Fermi level,
the states are, in energetic order, primarily Ti t2g and eg.

A molecular-orbital analysis, considered in conjunction
with measured x-ray spectra, allowed an empirical identifi-
cation of features in the optical spectra of Harbeke and
Cardona9 with specific electronic transitions.42 Although se-
lection rules, inferred from the approximate atomic states,
were invoked in that work, no effort was made to analyze the
polarization dependence of the selection rules. Some of the
most prominent features could not be identified at all, and
were attributed to the unaccounted excitonic effects. Assign-
ments of the same experimental features were made, for or-
dinary and extraordinary rays independently, from a band-
structure perspective by Glassford and Chelikowsky.33 But
the calculated spectra again did not treat the excitonic inter-
actions, and hence, did not reproduce the experimental fea-
tures to the level of agreement reported here. Also, local
electronic structure was not emphasized in the peak assign-
ment analysis.

Perhaps the most conspicuous anisotropic characteristic in
the rutile spectra is the stronger onset absorption for the ex-
traordinary ray. We observe that the first eV below the Fermi
level is dominated by the O 2p� states, and further, that the
oxygen-bonding planes are all defined by in-hexagonal-plane
normals. This implies that for some in-plane polarization,
there is a single dipole-allowed channel from one of the two
�-state orientations �corresponding to the two oxygen-
bonding planes�, and the three t2g states, while for the ex-
traordinary polarization, there are two dipole-allowed chan-
nels. This is consistent with the calculated and measured
stronger threshold resonance for the extraordinary ray. In
connection with this point, we emphasize that while the t2g
and eg symmetry labels are approximate because of angular
and bond-length distortions within the octahedra, the selec-
tion rules above are unmodified even when the local, D2h,
symmetry group is considered, while the actual crystallo-
graphic group in rutile is of even higher symmetry.

VI. SUMMARY AND CONCLUSIONS

In summary, we have developed a first-principles ap-
proach for calculations of various optical spectra, including
finite momentum transfer in crystals. The method combines
ground-state electronic structure calculations from ABINIT

with BSE calculations from the NBSE code. The method is

tested on bulk Si, yielding results in good agreement with
other methods. Calculations are presented for the macro-
scopic dielectric spectra and its orientation dependence in �
quartz, rutile TiO2, and anatase TiO2. Our quartz spectra for
the ordinary ray reproduce the strong excitonic character and
are in good agreement with experiment and earlier theoreti-
cal work. The anisotropies of the rutile and anatase phases of
TiO2 are more significant than for quartz. The static indices
of refraction for the two polarizations of rutile differ by more
than 10%, in agreement with experiment. Also our calculated
absorption at low energies reproduces experiment better than
previous theoretical results that neglect excitonic effects. In
particular our calculations reveal an additional low-energy
feature in anatase also found in experiment. Also we are able
to interpret the anisotropy in the threshold behavior for rutile
in terms of � to t2g selection rules.
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APPENDIX: AI2NBSE INTERFACE

In order to calculate the optical spectra, the AI2NBSE in-
terface first obtains Kohn-Sham energies and wave functions
from the self-consistent ground-state electronic structure
code ABINIT. The single-particle eigenenergies are modified
to include self-energy corrections according to the GW ap-
proximation. Subsequently the interface constructs several
quantities needed for the NBSE calculations. These include
current-operator matrix elements between Kohn-Sham states
and the ground-state charge density for calculating
Hybertsen-Levine-Louie screening. Thus, our interface does
not take advantage of ABINIT’s dielectric function capability.

Typical AI2NBSE calculations are divided into four modu-
lar stages and require a single input file, which contains all
parameters needed to define both the system and its ground-
state and excited-state one-electron properties. Briefly the
modular operations are as follows after the input file is read
and stored:

�1� ABINIT calculation: ABINIT inputs are generated and
ABINIT is run. These calculations supply the Kohn-Sham ei-
genvalues �nk and eigenfunctions �nk both for the occupied
and unoccupied states. Currently the interface uses a stan-
dard serial distribution of ABINIT. However, calculations for
large systems can still be performed by means of consecutive
runs, which are automatically set up by the interface, with
minimal input or intervention from a user.

�2� Density components: Fourier components of the
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ground-state density ��G� are generated using the eigenfunc-
tions from stage �1�.

�3� Dipole matrix elements: Dipole matrix elements in Eq.
�8� are calculated, and the eigenfunctions are converted to

the format used by NBSE.
�4� NBSE calculation: All quantities required for the

Bethe-Salpeter calculation are collected and NBSE is run. The
output includes various optical spectra and optical constants.
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